

Annexes

Contents

- 1. Abbreviations and Acronyms / page 2
- 2. Conversion Factors and Energy Equivalents / page 5
- 3. Definitions / page 6

1. Abbreviations and Acronyms

10 ³	kilo (k)	CMM	coal mine methane	
10 ⁶	mega (M)	CNG	compressed natural gas	
10 ⁹	giga (G)	$\rm CO_{2e}$	carbon dioxide equivalent	
10 ¹²	tera (T)	COP3	Conference of the Parties III, Kyoto1997	
10 ¹⁵	peta (P)	сР	centipoise	
1018	exa (E)	CSP	centralised solar power	
10 ²¹	zetta (Z)	d	day	
ABWR	advanced boiling water reactor	DC	direct current	
AC	alternating current	DHW	domestic hot water	
AHWR	advanced heavy water reactor	DOWA	deep ocean water applications	
API	American Petroleum Institute	ECE	Economic Commission for Europe	
APR	advanced pressurised reactor	EIA U.S.	Energy Information Administration /	
APWR	advanced pressurised water reactor		environmental impact assessment	
b/d	barrels per day	EOR	enhanced oil recovery	
bbl	barrel	EPIA	European Photovoltaic Industry Association	
bcf	billion cubic feet	EPR	European pressurised water reactor	
bcm	billion cubic metres	ESTIF	European Solar Thermal Industry Federation	
BGR	Bundesanstalt für Geowissenschaften	ETBE	ethyl tertiary butyl ether	
	und Rohstoffe	F	Fahrenheit	
billion	10 ⁹	FAO	UN Food and Agriculture Organization	
BIPV	building integrated PV	FBR	fast breeder reactor	
BNPP	buoyant nuclear power plant	FID	final investment decision	
boe	barrel of oil equivalent	FSU	former Soviet Union	
BOO	build, own, operate	ft	feet	
BOT	build, operate, transfer	g	gram	
bpsd	barrels per stream-day	gC	grams carbon	
bscf	billion standard cubic feet	GEF	Global Environment Facility	
Btu	British thermal unit	GHG	greenhouse gas	
BWR	boiling light-water-cooled and moderated	GTL	gas to liquids	
0		GTW	gas to wire	
0		GW_{e}	gigawatt electricity	
СВМ	coal-bed methane	GWh	gigawatt hour	
ct	cubic teet	h	hour	
CHP	combined heat and power	ha	hectare	
CIS	Commonwealth of Independent States	HDR	hot dry rocks	
cm	centimetre	hm³	cubic hectometre	

HPP	hydro power plant	Mcal	megacalorie	
HTR	high temperature reactor	MJ	Megajoule	
Hz	hertz	MI	megalitre	
IAEA	International Atomic Energy Agency	mm	millimetre	
IBRD	International Bank for Reconstruction and Development	MOU	memorandum of understanding	
IEA	International Energy Agency	mPa c	millinggal second	
IIASA	International Institute for Applied Systems Analysis	MSW	municipal solid waste	
IMF	International Monetary Fund	mt	million tonnes	
IMO	International Maritime Organization	mtpa	million tonnes per annum	
IPP	independent power producer	mtoe	million tonnes of oil equivalent606	
IPS	International Peat Society	MW	megawatt	
J	joule	MWe	megawatt electricity	
kcal	kilocalorie	MWh	megawatt hour	
ka	kilogram	MW_{p}	megawatt peak	
km	kilometre	\mathbf{MW}_{t}	megawatt thermal	
km²	sauare kilometre	Ν	negligible	
kPa	kilopascal	NEA	Nuclear Energy Agency	
ktoe	thousand tonnes of oil equivalent	NGLs	natural gas liquids	
kV	kilovolt	NGO	non governmental organisation	
kWa	kilowatt electricity	Nm³	normal cubic metre	
kWh	kilowatt hour	NPP	nuclear power plant / net primary productivity	
kWp	kilowatt peak	OAPEC	Organization of Arab Petroleum Exporting Countries	
kWt	kilowatt thermal	OECD	Organisation for Economic Co-operation and	
lb	pound (weight)		Development	
LNG	liquefied natural gas	OPEC	Organization of the Petroleum Exporting	
LPG	liquefied petroleum gas		Countries	
l/s	litres per second	OTEC	ocean thermal energy conversion	
l/t	litres per tonne	OWC	oscillating water column	
LWGR	light-water-cooled, graphite-moderated	p.a.	per annum	
	reactor	PBMR	pebble bed modular reactor	
LWR	light water reactor	PDO	plan for development and operation	
m	metre	PFBR	prototype fast breeder reactor	
m/s	metres per second	PHWR	pressurised heavy-water-moderated and cooled reactor	
m ²	square metre	nnm	narts ner million	
m ³	cubic metre	nnmu		
mb	millibar	ppinv		
		psia	pourius per square incri, absolute	

PV	photovoltaic	trillion	10 ¹²
PWR	pressurised light-water-moderated and cooled reactor	ttoe	thousand tonnes of oil equivalent
		tU	tonnes of uranium
RBMK	reaktor bolchoi mochtchnosti kanalni	TWh	terawatt hour
R&D	research and development	U	uranium
RD&D	research, development and demonstration	$U_3 O_8$	uranium oxide
R/P	reserves/production	UN	United Nations
rpm	revolutions per minute	UNDP	United Nations Development Programme
SER	Survey of Energy Resources	vol	volume
SHS	solar home system	W	watt
SWH	solar water heating	WEC	World Energy Council
t	tonne (metric ton)	Wp	watts peak
tb/d	thousand barrels per day	WPP	wind power plant
tC	tonnes carbon	wt	weight
tce	tonne of coal equivalent	WTO	World Trade Organization
tcf	trillion cubic feet	WWER	water-cooled water-moderated power reactor
tcm	trillion cubic metres	yr	year
toe	tonne of oil equivalent	3⁄4	unknown or zero
tpa	tonnes per annum	~	approximately
TPP	tidal power plant	<	less than
tpsd	tonnes per stream day	>	greater than
tscf	trillion standard cubic feet	≥	greater than or equal to

2. Conversion Factors and Energy Equivalents

Basic Energy Units

1 joule (J) = 0.2388 cal

1 calorie (cal) = 4.1868 J

(1 British thermal unit [Btu] = 1.055 kJ = 0.252 kcal)

WEC Standard Energy Units

1 tonne of oil equivalent (toe) = 42 GJ (net calorific value) = 10 034 Mcal

1 tonne of coal equivalent (tce) = 29.3 GJ (net calorific value) = 7 000 Mcal

Note: the tonne of oil equivalent currently employed by the International Energy Agency and the United Nations Statistics Division is defined as 107 kilocalories, net calorific value (equivalent to 41.868 GJ).

Volumetric Equivalents

1 barrel = 42 US gallons = approx. 159 litres

1 cubic metre = 35.315 cubic feet = 6.2898 barrels

Electricity

1 kWh of electricity output = 3.6 MJ = approx. 860 kcal

Representative Average Conversion Factors

1 tonne of crude oil = approx. 7.3 barrels

- 1 tonne of natural gas liquids = 45 GJ (net calorific value)
- 1 000 standard cubic metres of natural gas = 36 GJ (net calorific value)
- 1 tonne of uranium (light-water reactors, open cycle) = 10 000-16 000 toe
- 1 tonne of peat = 0.2275 toe
- 1 tonne of fuel wood = 0.3215 toe

1 kWh (primary energy equivalent) = 9.36 MJ = approx. 2 236 Mcal

Note: actual values vary by country and over time. Because of rounding, some totals may not agree exactly with the sum of their component parts.

3. Definitions

Coal

Proved amount in place is the resource remaining in known deposits that has been carefully measured and assessed as exploitable under present and expected local economic conditions with existing available technology.

Maximum depth of deposits and minimum seam thickness relate to the proved amount in place.

Proved recoverable reserves are the tonnage *within* the proved amount in place that can be recovered in the future under present and expected local economic conditions with existing available technology.

Estimated additional amount in place is the indicated and inferred tonnage *additional to* the proved amount in place that is of foreseeable economic interest. It includes estimates of amounts which could exist in unexplored extensions of known deposits or in undiscovered deposits in known coal-bearing areas, as well as amounts inferred through knowledge of favourable geological conditions. Speculative amounts are not included.

Estimated additional reserves recoverable is the tonnage *within* the estimated additional amount in place that geological and engineering information indicates with reasonable certainty might be recovered in the future.

Crude Oil

Crude oil is a naturally occurring mixture consisting predominantly of hydrocarbons that exists in liquid phase in natural underground reservoirs and is recoverable as liquids at typical atmospheric conditions of pressure and temperature. Crude oil has a viscosity no greater than 10 000 Pa.s (centipoises) at original reservoir conditions; oils of greater viscosity are included in Chapter 4 - Natural Bitumen and Extra-Heavy Oil.

Natural gas liquids (NGLs) are hydrocarbons that exist in the reservoir as constituents of natural gas but which are recovered as liquids in separators, field facilities or gas-processing plants. Natural gas liquids include (but are not limited to) ethane, propane, butanes, pentanes, natural gasoline and condensate; they may include small quantities of non-hydrocarbons. If reserves/resources/production/consumption of NGLs exist but cannot be separately quantified, they are included (as far as possible) under crude oil. In the tables the following definitions apply to both crude oil and natural gas liquids:

Proved amount in place is the resource remaining in known natural reservoirs that has been carefully measured and assessed as exploitable under present and expected local economic conditions with existing available technology.

Proved recoverable reserves are the quantity *within* the proved amount in place that can be recovered in the future under present and expected local economic conditions with existing available technology.

Estimated additional amount in place is the resource *additional to* the proved amount in place that is of foreseeable economic interest. Speculative amounts are not included.

Estimated additional reserves recoverable is the quantity *within* the estimated additional amount in place that geological and engineering information indicates with reasonable certainty might be recovered in the future.

Natural Gas

Natural gas is a mixture of hydrocarbon and small quantities of non-hydrocarbons that exists either in the gaseous phase or is in solution in crude oil in natural underground reservoirs, and which is gaseous at atmospheric conditions of pressure and temperature.

Natural gas liquids (hydrocarbons that exist in the reservoir as constituents of natural gas but which are recovered as liquids in separators, field facilities or gas-processing plants) are discussed in Chapter 2 – Crude Oil and Natural Gas Liquids.

Proved amount in place is the resource remaining in known natural reservoirs that has been carefully measured and assessed as exploitable under present and expected local economic conditions with existing available technology.

Proved recoverable reserves are the volume *within* the proved amount in place that can be recovered in the future under present and expected local economic conditions with existing available technology.

Estimated additional amount in place is the volume *additional to* the proved amount in place that is of foreseeable economic interest. Speculative amounts are not included.

Estimated additional reserves recoverable is the volume *within* the estimated additional amount in place that geological and engineering information indicates with reasonable certainty might be recovered in the future.

Production - where available, gross and net (marketed) volumes are given, together with the quantities re-injected, flared and lost in shrinkage (due to the extraction of natural gas liquids, etc.).

Consumption - natural gas consumed within the country, including imports but excluding amounts re-injected, flared and lost in shrinkage.

R/P (reserves/production) ratio is calculated by dividing proved recoverable reserves at the end of 2008 by production (gross less reinjected) in that year. The resulting figure is the time in years that the proved recoverable reserves would last if production were to continue at the 2008 level. As far as possible, natural gas volumes are expressed in standard cubic metres, measured dry at 15_{\circ} C and 1 013 mb, and the corresponding cubic feet (at 35.315 cubic feet per cubic metre).

Uranium & Nuclear

Uranium does not occur in a free metallic state in nature. It is a highly reactive metal that interacts readily with non-metals, and is an element in many intermetallic compounds. This *Survey* uses the system of ore classification developed by the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) and the International Atomic Energy Agency (IAEA). Estimates are divided into separate categories according to different levels of confidence in the quantities reported. The estimates are

further separated into categories based on the cost of uranium recovered at ore-processing plants. The cost categories are: less than US\$ 40/kgU; less than US\$ 80/kgU; less than US\$ 130/kgU and less than US\$ 260/kgU. Costs include the direct costs of mining, transporting and processing uranium ore, the associated costs of environmental and waste management, and the general costs associated with running the operation (as defined by the NEA). The resource data quoted in the present *Survey* reflect those published in the 2009 'Red Book'. Cost categories are expressed in terms of the US dollar as at 1 January 2009. The WEC follows the practice of the NEA/IAEA and defines estimates of discovered reserves in terms of uranium recoverable from mineable ore and not uranium contained in the ore (i.e. to allow for mining and processing losses). Although some countries continue to report *insitu* quantities, the major producers generally conform to these definitions. All resource estimates are expressed in terms of recoverable uranium (U), not uranium oxide (U₃O₈).

Note: 1 tonne of uranium = approximately 1.3 short tons of uranium oxide; US\$ 1 per pound of uranium oxide = US\$ 2.60 per kilogram of uranium; 1 short ton U3O8 = 0.769 tU.

Reasonably Assured Resources (RAR) refer to recoverable uranium that occurs in known mineral deposits of delineated size, grade and configuration such that the quantities which could be recovered within the given production cost ranges with currently proven mining and processing technology can be specified. Estimates of tonnage and grade are based on specific sample data and measurements of the deposits and on knowledge of deposit characteristics. RAR have a high assurance of existence.

Inferred Resources (IR) refer to recoverable uranium (in addition to RAR) that is inferred to occur, based on direct geological evidence, in extensions of well-explored deposits and in deposits in which geological continuity has been established, but where specific data and measurements of the deposits and knowledge of their characteristics are considered to be inadequate to classify the resource as RAR.

Undiscovered Resources refer to uranium in addition to reasonably assured resources and inferred resources and covers the two NEA categories, 'Prognosticated Resources' (PR) and 'Speculative Resources' (SR): PR refer to deposits for which the evidence is mainly indirect and which are believed to exist in well defined geological trends or areas of mineralisation with known deposits. SR refer to uranium that is thought to exist mostly on the basis of indirect evidence and geological extrapolations in deposits discoverable with existing exploration techniques.

Annual production is the production output of uranium ore concentrate from indigenous deposits, expressed as tonnes of uranium.

Cumulative production is the total cumulative production output of uranium ore concentrate from indigenous deposits, expressed as tonnes of uranium, produced in the period from the initiation of production until the end of the year stated.

Hydropower

This chapter is restricted to that form of hydraulic energy that results in the production of electrical energy as a result of the natural accumulation of water in streams or reservoirs being channelled through water turbines. Energy from tides and waves is discussed in Chapters 13 and 14. Annual generation and capacity attributable to pumped storage is excluded. Where such installations produce significant energy from natural run-off, the

amount is included in the total for annual generation. It must be recognised that for some countries it is not possible to obtain comprehensive data corresponding exactly to the definitions. This particularly applies to small hydro schemes, many of which are owned by small private generators. Also, not all countries use the same criteria for the distinction between small and large hydro. In this Survey, small hydro mainly applies to schemes of less than 10 MW. However, some countries and other sources of data make the distinction between small and large schemes at other levels. In the tables, the following definitions apply:

Gross theoretical capability is the annual energy potentially available in the country if all natural flows were turbined down to sea level or to the water level of the border of the country (if the watercourse extends into another country) with 100% efficiency from the machinery and driving water-works. Unless otherwise stated in the notes, the figures have been estimated on the basis of atmospheric precipitation and water run-off. Gross theoretical capability is often difficult to obtain strictly in accordance with the definition, especially where the data are obtained from sources outside the WEC. Considerable caution should therefore be exercised when using these data. Where the gross theoretical capability has not been reported, it has been estimated on the basis of the technically exploitable capability, assuming a capacity factor of 0.40. Where the technically exploitable capability is not reported, the value for economically exploitable capability has been adopted, preceded by a ">" sign.

Technically exploitable capability is the amount of the gross theoretical capability that can be exploited within the limits of current technology.

Peat

There are three main forms in which peat is used as a fuel:

- Sod peat slabs of peat, cut by hand or by machine, and dried in the air; mostly used as a household fuel;
- Milled peat granulated peat, produced on a large scale by special machines; used either as a power station fuel or as raw material for briquettes;
- Peat briquettes small blocks of dried, highly compressed peat; used mainly as a household fuel.

Member Committees of the World Energy Council

Albania	Israel	South Africa
Algeria	Italy	Spain
Argentina	Japan	Sri Lanka
Austria	Jordan	Swaziland
Bahrain	Kazakhstan	Sweden
Belgium	Kenya	Switzerland
Bolivia	Korea (Republic)	Syria (Arab Republic)
Botswana	Kuwait	Taiwan, China
Brazil	Latvia	Tanzania
Bulgaria	Lebanon	Thailand
Cameroon	Libya	Trinidad & Tobago
Canada	Lithuania	Tunisia
Chad	Luxembourg	Turkey
China	Macedonia (Republic)	Ukraine
Colombia	Mexico	United Arab Emirates
Congo (Democratic Republic)	Monaco	United Kingdom
Côte d'Ivoire	Morocco	United States
Croatia	Namibia	Uruguay
Cyprus	Nepal	Zimbabwe
Czech Republic	Netherlands	
Denmark	New Zealand	
Egypt (Arab Republic)	Niger	
Estonia	Nigeria	
Ethiopia	Pakistan	
Finland	Paraguay	
France	Peru	
Gabon	Philippines	
Germany	Poland	
Ghana	Portugal	
Greece	Qatar	
Hong Kong, China	Romania	
Hungary	Russian Federation	
Iceland	Saudi Arabia	
India	Senegal	
Indonesia	Serbia	
Iran (Islamic Republic)	Slovakia	
Ireland	Slovenia	

The World Energy Council (WEC) is the principal impartial network of leaders and practitioners promoting an affordable, stable and environmentally sensitive energy system for the greatest benefit of all. Formed in 1923, WEC is the UN-accredited global energy body, representing the entire energy spectrum, with more than 3000 member organisations located in over 90 countries and drawn from governments, private and state corporations, academia, NGOs and energy related stakeholders. WEC informs global, regional and national energy strategies by hosting high-level events, publishing authoritative studies, and working through its extensive member network to facilitate the world's energy policy dialogue.

Further details at www.worldenergy.org and @WECouncil

World Energy Council

Regency House 1–4 Warwick Street London W1B 5LT United Kingdom T (+44) 20 7734 5996 F (+44) 20 7734 5926 E info@worldenergy.org www.worldenergy.org

For sustainable energy.